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Purposes and Introduction 

In recent work (Dean and Evans 2024), I have argued for the potential creative 
utility of sequentially modifying categorical musical structures towards continua, 
exploring intermediates as expressive vehicles. The main purpose of the present 

article is to illustrate ways to explore the possible relatives of a given tuning system,  
on such a path towards a complete pitch continuum, using the prime-number scales 
(Dean 2009) as exemplar (see section Exploration).  I extend, through this exploration, 
the current set of categorical pitch structures used across cultures. The scales 
developed here challenge a composer or improviser to treat harmonic and melodic 
progressions in novel ways, triggered by the features discussed in what follows. The 
effects (i.e. affordances, implications) of these features may also suggest particular 
differential treatments of harmony and melody in different pitch zones (see section 
Discussion, Musical Examples and Conclusion).

The virtually uniform Western adoption of tuning systems based on octaves and equal 
temperaments with a single multiplicative frequency ratio interval between adjacent 
scale pitches has been queried (Will 1997; Dean, Bailes et al. 2008; Bongiovanni, 
Heald et al. 2023; Pushkar 2023). The main concern raised has been that octaves 
are perceived or generated quite imprecisely, even weakly (Wagner, Sturdy et al. 
2022), yet they are the basis of dominant conceptions such as pitch class (see below). 
Pitch perception is complex, though  perception of frequency differences is closer 
to a uniform multiplicative (i.e. logarithmic) approach than to an additive linear one 
(Burns 1999). But this does not exclude other such tuning approaches, such as those 
employed by many Asian and African cultures. Indeed, Pythagorean and Just tunings 
in the early history of Western music use numerous frequency multipliers rather than 
just one. Just tuning involves frequency ratios that are all integer, the largest within the 
repeating pattern being 2:1, the octave. At the opposite extreme, while continuously 
varying pitches cannot be played on a conventional piano, they are readily available 
on (unfretted) string instruments, many wind instruments (e.g. slide trombone) and on 
computational virtual multi-tuned pianos (Dean 2022). I emphasise, in this paper, pitch 
systems based on additive approaches, i.e. intervals based on frequency differences 
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rather than ratios. This is not to argue that regular additive differences are preferable to regular multiplicative (logarithmic) differences but, 
rather, that they have been far less explored and hence deserve attention. Ideas of ratios in pitch are probably far more common because 
of the ratio nature of the harmonic series of frequencies but many sounds are inharmonic. 

Let us recap the relevant terminology and background. The term nTET refers to equal tempered systems where every adjacent pair of 
pitches bears the same frequency ratio. If the system uses octaves (which have a frequency ratio 2.0), then n defines the number of steps 
in an octave (hence a uniform frequency ratio 1.06 for 12TET, a smaller value for 22TET, etc.). The pattern of n pitches repeats every 
octave (1.0612 ~ 2.0) and such octave-based systems can more precisely be termed nEDO (n equal divisions of the octave: features 
summarised in Figs. 1a–b). Pitch systems generally operate over more than 7 octaves. It is normal in music theory to consider the 12 
EDO steps to be the same 12 pitch-classes (chroma) in all the different octaves, though perceptually this relationship is weak beyond one 
octave (Wagner, Sturdy et al. 2022). This weakness likely reflects several influences: the variability and imprecision of detection of the 
fundamental pitch of a note, the common occurrence of stretched octaves and the variability of spectral patterns of notes that are close 
to being one or more octaves apart (discussed in Burns (1999)). Every repeating pattern of pitch intervals (such as 12EDO) constitutes 
a tuning system that can occupy the whole audible range. Within the octave, different sequences of pitches can be chosen to constitute 
scale systems that also recur in each successive octave.  A very few systems, discussed below, do not repeat over the audible range 
(Dean, 2009).  The overall field of diverse tuning systems is often termed ‘microtonality’, with ‘micro’ indicating a particular interest in pitch 
intervals smaller than a conventional 12EDO semitone. But most commonly ‘microtonality’ is now used to indicate any pitch system that 
differs from 12EDO.

Milne and others have broadened the term ‘dynamic tonality’ i.e. systems open to live manipulation by a performer. While retaining a pitch 
span over which patterns of frequency ratios recur, they have introduced systems where more than one frequency ratio may be selected 
(Milne, Sethares et al. 2008; Milne and Prechtl 2008). For example, within their Viking synthesiser software, possible ratios drawn from 
a continuum can be chosen to determine, first, the span over which the pattern repeats: usually octaves, stretched octaves, tritaves 
(frequency ratio 3:2) or quintaves (5:2). Viking, secondly, allows separate generator ratios to be set, that usually determine a pitch interval 
adjacent to the EDO perfect fifth (1.067), but sometimes adjacent to the minor or major third (1.063 or 1.064). The remaining members of 
the repeating pitch ratio set are determined consequent upon this, so, with a generator frequency multiplier of n and a starting pitch of 
f, the first generated pitch is nf, the second n2f, and the n-th nnf.  Once the frequency exceeds 2f, it is brought back into the starting f-2f 
octave (by removing the appropriate number of octaves from its frequency). This results in scale sets with varied ratios between adjacent 
pitches, potentially creating a continuum of both scales and tunings that are usually not ET but that still depend on the chosen frequency 
ratio. Adjustments are often used to allow the scale pattern to include octaves.

In contrast to these systems based on repeated frequency ratios, I previously created a totally unequally tempered family of prime-
number scales, with 81 or 91 steps, that avoids repeating frequency ratio intervals but instead emphasises frequency difference intervals, 
several of which recur in different frequency ranges. These are now included in the Scala database of scale systems (Dean 2009). Having 
chosen an (unsounded) base frequency for the system, each member is created by successively multiplying it by the prime numbers (2, 
3, 5, 7, 11, 13, 17,…), forming a series of unique ratio intervals. Prime numbers are those only divisible by one and themselves. Since 
the base pitch is not included, there are no octaves: if n is a prime number, 2n cannot be prime by definition. Because of the disposition 
of prime numbers, there are no repeated ratio-intervals (though several prime numbers are separated by a difference of 2 or 3, creating 
recurrent frequency differences). A scale structure devised within this system needs to cover the whole audible frequency range (because 
of the lack of frequency interval and hence octave repetition). These systems have been useful in some of my compositions, and have 
been subject to limited perceptual study (Leung and Dean 2018a; Leung and Dean 2018b, Leung and Dean 2018c), showing that, for 
most people (musically trained or not), it is more difficult in short-term experiments to learn pitch interval patterns (melodies) in this 
unfamiliar system than in several (familiar) equal tempered systems. Again, this is no reason for discounting its expressive possibilities, 
especially for avid repeat listeners.

As Fig. 1 shows, the 81-primes system, though diverse, is quite biased in its distribution of frequency differences and ratios. I develop, 
in this paper, approaches to manipulate such frequency distributions and indicate how they point towards uniform additive steps and 
ultimately to complete continua (with any pitch being possible). I suggest that the intermediaries are potentially interesting tuning systems 
for music-making. 
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I considered two main factors.  First, there seems limited point in having discrete pitches that are so close in frequency that they 
cannot be distinguished within a melody (but see further comment below concerning chords comprising such pairs of pitches). The Just 
Noticeable Difference (JND) for pitch frequencies in simple timbres is generally around 1Hz (1 cycle/second) in the frequency range 
10–3,000Hz (Schneider 2018; Arndt, Schlemmer et al. 2020). As frequencies increase towards the routinely used audible maximum for 
pitch fundamentals (around 4,100Hz), the JND increases progressively to about 7Hz.  So, one can reasonably devise systems with step 
size at or above these JNDs. Note that both pitched and unpitched sounds contain important perceptible higher frequences up to around 
22,050Hz (the effective frequency maximum of conventional CD-quality audio). Second, I considered the number of steps within the 20 
–4,000Hz range in the tuning systems of the Scala database: there are few with scale structures containing more than the 81- (or 91-) 
primes scales (Dean 2009). Most Scala scales, moreover, repeat seven times across the whole audible range of the corresponding tuning 
system (unlike the primes scales). So, conventional 12-, 22- or 31-EDO tuning systems would contain 84, 154 or 217 steps respectively. 
The rarer 53-EDO scale presents more steps in the complete system, while the Bohlen-Pierce system (most commonly equal tempered, 
and repeating at the tritave, comprising 13 pitches per tritave (Mathews, Pierce et al. 1988; Loui, Wessel et al. 2010)) has fewer (c~60) 
than the 12EDO.  It seems that the optimal overall number of discrete pitches in the audible range should probably be no more than 220.

Exploration: Modifying Prime Number and Related Scales by 
Inversions, Combinations and Randomisations
The principle of converting categorical tuning systems via a series of steps gradually towards complete continua requires identifying the 
features of the systems that should be perturbed and then doing so methodically. The composer or improviser can, after this, use their 
own processes of music creation to evaluate the utility (initially, solely from their own perspective) of the different systems they have made.  
Besides pitch height (the absolute frequency of a pitch) per se, the salient features of the systems developed are the frequency ratio(s) 
(multiplicative) and the frequency difference(s) (additive) that each pitch bears to its neighbours. There is interest in assessing variations 
of each of these features, since Western 12EDO tuning shows complete stasis in ratio interval at ~1.06 (Fig. 1b), and consequently, a 
progressive linear increase with frequency of the frequency differences (Fig. 1a) to a maximum of about 250Hz.

The 81-primes system (or scale) (Fig. 1c–d), in contrast, shows variable frequency differences (10–140 Hz). While there is some linear 
trend, the relationship is even better represented by a Loess (multi-segment) fit. There are repeated frequency differences, but no 
repeated frequency ratios. Correspondingly, the pitch step frequency ratios (range 1.01 to 1.67) show a weak linearly descending trend, 
much better represented by a Loess fit. In both respects (difference and ratio), the 81-primes scale is radically different from 12- (or other) 
EDOs. 

To vary maximally both key features (difference and ratio), it would be desirable to consider both inverses of the 81-primes feature 
distributions and more repetitious distributions. The first can be achieved by constructing a system like the 81-primes in choosing an 
arbitrary high starting pitch (4,096Hz) and altering it successively by subtracting the result of multiplying the inverses of primes in 
increasing magnitude (i.e. starting with (1/largest prime) and continuing to (1/smallest prime)) by a chosen constant frequency. The result 
of this is shown in Fig. 2a–b, using frequency multiplier 2,640Hz to fit outcomes into the desired range. Now frequency differences range 
from 6 to 866.67 while ratios are from 1.001 to 36.91, in both cases substantially expanded. There is a descending trend in differences in 
relation to frequency, as intended, but the large interval between the first and second pitches (not shown) makes the scale of use mainly 
in the high register. As with the original 81-primes tunings, there are no duplicate ratio intervals, though sizes become very similar at high 
frequency. Unlike both 12TET and the original 81-primes scale, this system shows similar descents with frequency for both difference 
and ratio measures.

In moving to diverge further from the standard 12EDO system and produce more diverse distributions, I combined both primes pitch sets, 
removing the upper of any adjacent pair of pitches that were not at least 7Hz apart (taking account of the JND criterion already described), 
giving the Composite scale, Figs. 2c–d. This scale contains 143 members (within the target maximum), frequency differences 7.08–240 
and ratios 1.002–1.667. Because of the addition of several steps between 2,000 and 4,000, the Loess plot of differences is now slightly 
biphasic (though the overall linear descent remains). The ratios plot primarily shows the original 81-primes variability and descent with 
frequency. One further step in this direction was assayed: adding to the Composite scale another primes system with root 30Hz instead of
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Figure 1. Vertical lines (1a) indicate octaves, where pitch classes repeat. Red and green lines (c, d) are Loess multi-segment fits, 
unsegmented black (in all subfigures) is the linear fit. 
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Fig. 1b. 12EDO: Hz Ratios
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Fig. 1c. 81Primes: Hz Differences

Frequency(Hz)

Fr
eq

ue
nc

y 
D

iff
er

en
ce

(H
z)

0 1000 2000 3000 4000

1.
0

1.
4

Fig. 1d. 81Primes: Hz Ratios

Frequency(Hz)

Fr
eq

ue
nc

y 
R

at
io

(H
z)

Figure 2. Red and green lines are again Loess fits. In 2a–b the lowest frequency member is not shown (for reasons of scale comparability) 
and the Loess fits are shortened correspondingly. 
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Fig. 2a. Inverse Primes: Hz Differences
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Fig. 2b. Inverse Primes: Hz Ratios
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Fig. 2c. Composite Scale: Hz Differences
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Fig. 2d. Composite Scale: Hz Ratios
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the earlier 10Hz, giving recurrent difference intervals of 20Hz, some of which were then removed because of the application of the >7Hz 
difference rule. This system (named Composite2) comprises 171 members.

Additional scales with randomised or uniform pitch difference steps can readily be obtained within the operative 20–4,100Hz range. For 
example, with ~205 steps all at 20Hz difference, every ratio differs and they decrease as frequency rises, as in Fig. 1d, and Figs. 2b, 
2d. Alternatively, one might use ~ 205 at difference values randomised as 20Hz +/- random(10) with adjustments if necessary to avoid 
steps <7Hz and to cover the whole desired range (ratios again tend to decrease with frequency). This is shown as Random20 in Table 1. 
Another interesting approach relevant here (not shown) would be to use the Gaussian approximation to the prime number series, where 
the n-th prime is estimated as nlogen (where loge indicates the natural logarithm). The history of approximations to the prime number 
series (or instead to counts of prime numbers up to a certain range) has been well described (Zagier 1977). After a maximum resolution 
of about 400 additive steps at an average around 10Hz, too many intervals come close to the JND and are less useful. Another interesting 
computational possibility (also available as a switch on the PianoTeq physical synthesis instrument) is to invert the keyboard, so that the 
pitch pattern appears downwards from the highest frequencies rather than in its normal mode.  At this point the next step is the complete 
continuum such as I have developed for the virtual piano (Dean 2022). Here the performer can choose how close in pitch to play (using 
a touch-sensitive interface such as an iPad) and judge acoustic effects of combinations closer than the JND, some of which are at the 
least timbrally interesting.

The Coefficient of Variation (CV) measures the ratio of Standard Deviation (SD) to Mean, an index of the variability of the values. As 
noted in the text, the removal of pitches that provided differences <7Hz from their predecessor was only done for the two Composite 
systems. With the inverse primes, 15 successive differences in the very highest register were between 6–8Hz (and were retained). With 
the Random20 system, the first implementation covering the whole pitch range up to 4,096Hz (actual maximum 4,098Hz) did not contain 
any differences <7Hz. 

Table 1 shows some of the statistical changes in distributional pattern amongst the different systems described. Some of the salient 
features are the very low Minimum Differences (in the very low register) of 12EDO, though all are above the relevant JND. The other 
systems all have minima between 6–10Hz. System 12EDO, similarly, has an unusually large Maximum Difference (235 Hz) but one of the 
prime number systems exceeds this, while, as desired, the Random20 system is consistently small in difference step. Consequently, it is

Table 1. Statistical Features of the Pitch Difference Distributions of the Tuning Systems. The table headings indicate the fol-
lowing: nPitches is their number in the system. Min., Max., Med., Mean., S.D., CV. are respectively the Minimum, Maximum, 

Median, Mean, Standard Deviation and Coefficient of Variation of the pitch differences.

System nPitches MinHzDiff MaxHzDiff MedHzDiff   MeanHzDiff S.D.HzDiff     CV

12EDO 88 1.64 234.94 19.6 47.80 59.76 1.25

81Primes 81 10 140 40 52.13 31.25 0.60

Inverse81 
Primes

81 6.21 866.67 14.44 50.90 21.05 2.38

Composite 143 7.08 140 20 29.37 24.18 0.82

Composite2 171 7.08            100 20 24.53 17.70 0.72

Random20 206 10 30 19 19.89 6.01 0.30
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Inverse Primes > 12EDO that have the largest CV. System 12EDO shows the largest SD for HzDiff, as expected from its multiplicative 
origin, while the other constructed systems quite well represent the possible downward range (to a minimum SD of 6 in the Random20 
system). Another criterion that might be applied to choosing the system of interval ratios (depending on user or ideological aesthetic 
preference) is that of approximation to small integer ratios known as  ‘just’ or ‘pure’, a result often termed ‘optimal’ (for a stimulating 
mathematical article on this, see Goldstein (1977)). Other generalised approaches, assuming 12 subdivisions of an octave and with 
controlled degrees of tempering, that is, deviation from just intervals, have been discussed (e.g. Farup 2014). 

Discussion, Musical Examples and Conclusion 
As mentioned, one purpose of the scales developed here is to encourage the treatment of harmonic and melodic progressions in novel 
ways, triggered by the scale structures, the musician’s responses to them and the inclusion of possible distinct handling of different zones 
of the keyboard or pitch areas. For example, with the composite scale, the zone of frequencies greater than 2,500Hz, with numerous 
small intervals around 10Hz, can be used differently from the lower keyboard (with intervals >20Hz) in ways that do not apply with 12-
EDO. For example, enunciating a given melodic or harmonic succession within a range of perhaps 12 adjacent pitches in the >2500Hz 
zone will be very different from doing so in the lower keyboard, and not just in average pitch height but also in cluster effects and in the 
degree of detectability of pitch contours. Combining different tunings on different keyboards is also effective, as major effects (such as 
beating) of inter-tone spectra work even dichotically (when delivered to separate ears), as illustrated in Sound Sample 2. As implied 
already, a pair of pitches that cannot be distinguished reliably when played successively, when played together will nevertheless almost 
certainly offer timbres distinguishable from those of either member alone. So, while perceptibility is necessary for utility of a tuning system, 
melodic separability of each of the scale note set from each other may not be. This view is also supported in Goldstein’s discussion of 
temperament ‘optimality’ (Goldstein 1977).

In Dean and Evans (2024), we argue that familiarity and fluidity with a range of tuning systems can also help intercultural performers to 
work across musics with different traditions of tuning systems. Here I suggest that, on most instruments, listening to and thinking about 
the spectral combinations that arise from simultaneous multiple pitches in a tuning system can aid a performer in the development of 
sensitivity to expressive techniques on their instrument (some appropriately termed ‘extended techniques’), whatever the music they 
interpret and whatever the instrument they play.

It is in this spirit that I approached the development and use of my 81-primes scale for the two sound examples attached to this article.  
Sound Sample 1 is an extract from Ubasuteyama (2008)  and is about the ancient Japanese practice of Ubasuteyama [grandmother 
throwing mountain] whereby an elderly relative was taken up a mountain and left to die. The practice was the basis of a film by Shohei 
Imamura, The Ballad of Narayama. The text of the piece, by Hazel Smith, also refers to a Buddhist allegory, designed to illustrate self-
forgetfulness and concern for others, about an old woman who was taken up the mountain and who scattered twigs to help her son find 
his way back. The piece was conceived as a compositional structure, with improvised material. The original 81-primes scale is used  in 
the form of noise-bearing synthetic electronic sounds made in MaxMSP (a leading algorithmic music coding and performance platform 
expressed in graphic objects), with just detectable spectral centroids (which the performer at least can consider their pitches). The scale 
is also used on a synthesiser that creates continuously sustained keyboard instrument sounds with precisely detectable pitches. The 
synthesiser was set up with its MIDI notes defined as the pitches of the scale. The improvisation of some of the material led me to observe 
and exploit the fact that some synthesiser pitches or pitch combinations give somewhat unusual percussive effects in their transient 
attacks, while yet having a potentially long-sustained, non-decaying continuation (unlike most percussion instruments, which inevitably 
decay quite quickly).

Sound Sample 2 is Stretches, Joins, Overlaps 1 (2024) , created while writing this article and with the creative and cognitive issues I 
have mentioned strongly in mind. It was produced by first recording (in MIDI and audio) an improvisation using the new composite scale 
described above on a MIDI-keyboard that was sounding the commercial physical synthesis piano, PianoTeq, also used in earlier work 
on a continuous pitch virtual piano (Dean, 2022). PianoTeq has physical models of major brands of excellent grand pianos (e.g. such as 
Steinway and Yamaha). When playing isolated tones, it makes highly plausible piano-like sounds whatever the pitch pattern it enunciates, 
unlike sample-based electronic pianos where interpolation between samples to produce intervening pitches can be unconvincing. The 

http://www.jmro.org.au/pub/mp3/72/72-Dean-1.mp3
http://www.jmro.org.au/pub/mp3/72/72-Dean-2.mp3
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physical models of PianoTeq have presumably not been extensively tested for acoustic precision with respect to sounds made by 
retuning genuine grand pianos and may or may not be highly accurate. In current versions of the software, there are switches to 
allow a user to somewhat control which physical mechanisms are extremely stretched in the model so as to generate the required 
pitch combinations. In any case, for a performer (or creator) the salient feature (as always) is to interrogate how melodic and 
harmonic pitch groupings sound and appeal and how they can be expressive.

I used a MaxMSP patch to send extended MIDI signals, with minute pitch differences expressed in the code, to PianoTeq. My 
improvisation exploited the fact that notes and particularly chords in the very low register again sounded very percussive and noisy, 
with a complex progressive decay. A few particular, mid-register chords had elements of this effect, while high notes and chords 
were much clearer and more pitch-bearing. Some combinations and registers could produce sounds that seemed plucked and not 
exactly as the grand piano sounds when plucked. These were amongst the features that I attempted to exploit in my improvising. 
I undertook two improvisations and chose the second for further use. At that point, following on earlier ideas (Dean and Evans, 
2024), I conceived the idea of using again the same MIDI-setquence that I had just recorded alongside audio, but played as normal 
12EDO pitches and in reverse order. Thus, for example, a high-resolution note of MIDI value 60.79 would become 60.0, and be 
heard as middle C in the current 12EDO tuning chosen in PianoTeq (with C60=256 Hz) rather than what might have been a pitch 
at least 100Hz away in the composite system. Interestingly, with the PianoTeq settings in force (one can vary attack, nature of the 
instrument, etc.) some mid-register chords were again slightly more percussive than most. I made the final piece by a compositional 
interplay between chosen segments of the reversal of the audio of the original MIDI file (converted to 12-EDO) and the audio of its 
initial composite primes tuning version. Unlike reversing an audio file, reversing a MIDI-file produces the normal sequence of attack 
and decay for each event, but just in reverse order. Besides controlling overall dynamic changes and spatial distribution of sounds, 
I again took note of juxtapositions that enhanced what to me seemed appealing spectral effects between the expressed pitches.

I have chosen these sound examples partly because their interests for me go beyond the pitch pattern implications for melody 
and harmony of the chosen tuning systems and rather emphasise timbral and resonance features. But, to recall some of the 
earlier arguments, changing the nature of melody and harmony has been a concern of most tuning systems in the history of music 
throughout the world, and systematic approaches, such as I describe, may allow further productive discovery. I hope these initial 
observations can indicate some of the appeals of the exploratory pitch path I am describing. 
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SOUND SAMPLE CREDITS

There are two items:

1. An extract of Ubasuteyama (2008) by Roger Dean (sound) and Hazel Smith (text, text performer), is performed by austraLYSIS. 
The piece is available on Wirripang CD (Wirr 11) and at www.australysis.com. It uses Dean’s 81-primes scale in the keyboard and 
electroacoustic parts.

2. A new piece, Stretches, Joins, Overlaps 1 (2024) for one composite primes-tuned PianoTeq grand piano and one 12EDO-tuned, has 
been made for this article by the author.

ABSTRACT

I have recently codified and analysed some general and potentially valuable approaches to finding novel musical vehicles for expression. 
One of these is the process of gradually converting any set of categorical elements of musical structure towards a continuum, allowing 
a musical creator to then make a personal assessment of the utility and expressive applicability of each gradation within their own work. 
The purpose of this article is to illustrate this with respect to pitch structures, starting from normal Western tuning, such as that of the 
piano, and moving towards continuous pitch structures, in this case emphasising intermediaries based on prime number systems, one 
from my earlier work and others created for the article. I provide pointers towards the perceptual and cognitive aspects of pitch structures, 
alongside the consideration of their utility for music composition and improvisation.  I complement the argument with two concrete audio 
examples: an extract of an ensemble piece made using my original 81-primes scale in the keyboards and a complete keyboard piece 
made with some of the graded tuning intermediaries discussed here. 
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